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Abstract. In this paper we present the generalization of the q-derivative and investigate 
its properties. The formula of conjugation for scalar products with respect to the Lebesgue 
and discrete measures is obtained. This formalism is applied to classical mechanical systems 
depending on functional derivatives. We derive the deformed Euler-Lagrange equations 
and deformed Poisson bracket by an assumption that it determines the functional evolution 
ofthesystems. It appears that in such models a Hamiltonian analogue is no longer conserved 
in time. For a few examples the explicit forms of constanls of evolution are given. 

I. Introduction 

Recently various aspects of q-deformed algebras [l, 21 were considered. The annihila- 
tion and creation operators of independent q-oscillators, first defined in papers by 
Biedenharn [3] and MacFarlane [4] became a useful tool in the construction of 
deformed Lie algebras [5-71. These new mathematical objects were applied to physical 
models, e.g. in the vertex and spin models [8,9], and quantum optics [lo]. On the 
other hand, certain equations including deformed operators were investigated and their 
exact solutions and spectra were obtained [ll,  121. 

The natural question arises; how to deal with classical systems depending on the 
q-derivative of variables and how to describe the time evolution of such a system. 
Here we should mention the paper by Caldi 1131 in which the evolution of observables 
determined by the quantum deformed bracket, as well as q-evolution with respect to 
the non-deformed quantum bracket, were described. 

In our work we shall deal with classical models and assume that the action includes 
q-derivative of variables. We derive the necessary condition for the stationary point 
of such functional, e.g. the analogue of Euler-Lagrange equations. Assuming that the 
deformed Poisson bracket should determine q-evolution of functions on phase-space, 
we obtain the explicit formula for the deformed Poisson bracket and discuss its 
properties. It appears that, similarly to the commutation properties of deformed SU,(n) 
algebras, it is neither symmetric nor anti-symmetric. 

The paper is organized as follows. In section 2 we give the extension of qderivative 
to the new operator which we call the &derivative. In the following we calculate the 
inverse and conjugate operator and investigate their properties. In section 3.1 we 
consider classical models with discrete time, deriving for them Euler-Lagrange 
equations and deformed Poisson bracket. In section 3.2 analogous calculations have 
been performed for classical deformed models with continuous time. 
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2. q-analysis and its extension 

2 1 .  Definitions 

In this section we shall generalize the q-derivatives that are known and used in the 
realization of quantum algebras, given by the formulae 

8," ( q 2 T - T ) - ' [ & - - t ]  ~, :=(4T-q- 'T) - ' [5 , -59-1]  (2) 
where we have introduced a dilation operator acting on the function as follows 

l J ( T )  :=f(aT).  

Formula (1) suggests the following expression for the general functional +-derivative 
of the real function 

with C+ operator of the form 

& f ( T )  :=f (+(T)) .  

Taking the function + as 

@b(T) = 4'7 
one gets the q-derivative, while translation given by the formula 

+ ( T )  = ~ + h  

produces the difference derivative also used in functional evolution describing muon 
mechanics [14]. 

22.  Properties of +-differentiation: ifs inverse and conjugated operator 

Let us now consider the properties of the defined operator. First we check how it acts 
on simple functions of real variables. 

On monomials we get 

with the commutation formula similar to that of the q-derivative 

d + ~ = l + + ( ~ ) d , .  (5) 
The formula for exponential function can be easily obtained from the above expression 
for monomials 

Negative powers give, under +-differentiation, the following function: 
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One can check that +-derivative has properties similar to that of differentiation 
procedure. namely: 

(i) The +-derivative is a linear operator 

a+[Qf + p g ] ( T )  Qa+f(d + p J + P ( T ) .  

(ii) The +-derivative gives, for products of functions, the slightly modified formula 

J+? d T ] =  J.+.f[~ld~]+f [+(T) lJ+dT] .  (8) 

J + f . g [ T l =  J g . + . g - l f [ g ( T ) l a ~ [ T l .  (9)  

(iii) For the +-derivative of composed function we get 

(iv) Formula (9) implies the following expression for the +-derivative ofthe inverse 
function 

ap+as-lq-'[P(T)l  = [a&[Tl]-'. 

The inverse operator acting analogously to the definite integrals for q-derivatives 
is known: 

m 
i f q < l  lo' U( 7) dpq( 7 )  = - ( q2"+'t - q'"t)u( q2nt) (10) 

*=0 

m 

i f q > l  u(T)dpq(T)=- (q2"+'t-qznt)u(q'"t) (11 )  
"=O 

and for symmetric derivatives 
m 

i f q < l  jo' U ( T ) ~ ~ ~ ( T ) = -  ( q Z n c 2 t - q Z n y ) U ( q 2 " * ' t )  

i f q > l  U(.) dpq(T) = - (q2'+2t-q2"t)u(q2nt't) .  

"=O 

m 

*=0 

It is possible to construct expressions like this for +-derivatives provided that the 
function + satisfies the conditions-the following limits (finite or not) should exist 

b =  lim + " ( T )  V n E N  +" # 1. 
n--m 

a = l i m  + " ( T )  
n-m 

Let us note that neither of the iterations of function +, the condition that coincide 
with the unity operator, plays a crucial role in the construction of the + integral. As 
examples of such functions we can take + ( T )  = 1 / ~  or +( T )  = -T. Considering extension 
of our construction to complex variables we see that for a q-derivative, with q equal 
to one of roots of unity q" = 1, we would not have been able to build the inverse operator. 

Taking these restrictions into account we can obtain the formula for the +-integral 
after iterating the formula (3) for +-derivative and summing up: 
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(i) It is linear. 
(ii) The integration can be done by parts according to the formula (8) for the 

+-derivative 

!,: amf[sIgbl d d s )  =F g[sll:;- J'f[+(s)l&&l +&). (14) 

(iii) After change of variables we get 
'I .%(',I 

f(ds))J&![sI dp+(s) = f (g(s ) )  dpg.+.g-l(g(S)). (15) 
#(la) 

The important problem in applications ofthe proposed formalism is the conjugated 
operator of the +-derivative. We have two possibilities. One is to find out whether it 
could be conjugated for scalar products given by the Lebesgue measure on real, positive 
numbers. The other way is construction of a scalar product from an inverse operator 
of the +-derivative. Such an operator applied to the formula of +-differentiation of 
product of functions, gives the formula of +-integration by parts. Thus, setting functions 
describing physical states equal to zero at the boundaries, we shall construct the 
conjugated +-derivative as in the real non-deformed analysis. The further application 
to mechanics produces two sets of models with continuous and discrete time, which 
will be the subject of the next section. 

First we consider the scalar product given by the integral connected with +- 
derivative 

(fl g)+ = !".f(S)g(s) dp&) 
' 0  

= - 2 (+"+'(fl)-~"(f,)) .f(+"(fl))g(+"(fl))  
"=O 

+ 2 (+"+I (  t o )  - +"( t o M +  " (to))g(+" ( to))  (16) 
" = O  

where a s f , < f , s b .  
The conjugated q-derivative was used by us in the realization of harmonic oscillators 

as operators acting on space of functions of real variables [ 151. 
Analysing the general definition (16) we note that the product is degenerate-giving 

zero norm for non-vanishing functions. To obtain the non-degenerate form of the 
scalar product we must pass from %[to,  f,], the space of real functions on [ to ,  f,], to 
a quotient space %[lo ,  f J =  where the equivalence relation is defined by the formula 

f = g M f - g l f - g ) m  =o. 
Using the formula (14) for integration by parts and restricting ourselves to the functions 
from % [ l o ,  t J =  which vanish for to and f l  we get the conjugated operators 

a i  = -a+. i+-l. 

The models with continuous time require another definition of scalar product. 
However, for integrals with Lebesgue measure the q- and +-derivatives do not fulfil 
the integration by parts formula. Therefore we must restrict ourselves to integrals over 
i n h i t e  intervals and apply a change of variables. Still we were only able to build a 
conjugated operator for the + function taken as 

+( T) = a~ + b. 
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We should point out that the formulae for operators conjugated with respect to 
+-integral and the Lebesgue measure coincide with these $-functions for which both 
can be constructed. Therefore, as we will show, for the models with functional evolution 
the deformed Poisson brackets are the same for models with discrete and continuous 
time. 

Let us note that the symmetric q-derivative 5, multiplied by an irrational number 
i is self-conjugated with respect to Lebesgue measure. This property, similar to self- 
conjugated ordinary derivative, differs the symmetric q-derivative from q-derivative 
(1) and its generalization. Since such operators give anti-symmetric Poisson brackets 
we consider, in the following, non-symmetric derivatives. 

The conjugated non-symmetric +-derivative can be expressed as a nonlinear funo  
tion of function + and the +-derivative 

m 

a:=-a, (-i)"[($-i)a+]". (1'0 

It is also important to check the commutation relations of the +-derivative and its 
conjugation 

"=O 

One can see that the last term in the above formula disappears when the function + 
fulfils the functional equation 

This is the equation of linear iteration of order 2 [16] and one can check that linear 
function 

+ ( + ) = a ~ + b  (20) 

is a solution for arbitrary values of parameter b. 

+-derivative and <+ operator 
For such functions we have also the following commutation formula for the 

a&-l f (4  = a- '&-la+f(T)  (21) 

%<+"f(r) = a"14%f(r). (22) 

2.3. Application of +-derivative formalism to certain functional equations 

To close the first part of our paper we present an application of analysis based on the 
$-derivative idea applied to a functional equation with separate variables 

a$(?.) = u r f ( m ( ~ )  q<1.  (23) 
It can be written down as the following integral equation 
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When the integral with respect to thefo ~ ~ 2 a f - l  functional measure can be performed 
we get the solution of (23) in an explicit form. We list below a few nonlinear iterative 
functional equations and their solutions satisfying the initial condition f(0) = (Y 

obtained via the f o  K $ o ~ - '  integral 

As we have shown the general $-derivative and integral calculus allows us to solve 
some nonlinear functional equations and probably could also be used for a wider class 
of equations. 

In this section we have given a brief review of formulae for analysis based on the 
cp and &derivative concept. Our further aim is to apply this formalism to mechanics 
where functional evolution would be considered. 

3. q-classical mechanics based on functional evolution 

In the preceding section we investigated properties of general functional derivative. 
Here we shall use this formalism in mechanical systems which depend on functional 
derivatives of variables. One should mention that the functional derivatives, namely 
the difference- and q-derivatives, were applied before, both in context of theory of 
functional equations as well as in analysis of various physical systems. 

However, functional derivatives were then used on the level of quantum 
mechanics-in the Schrodinger equation or in functional evolution. The last problem 
was studied in a paper by Caldi [13] who considered the following ways of time- 
evolution: 

( 1 )  d/(df)O=[O,H],, where evolution is determined by a usual derivative and 
deformed quantum bracket, or; 

(2) [J],O = [0, HI, where the observable evolves under symmetric q-derivative 
and non-deformed quantum bracket. 
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The author rightly notes that the most interesting case when functional time- 
evolution is connected with the deformed quantum bracket is also very difficult to 
solve. Apart from technical difficulties in solving the equation of fully deformed systems 
in the form 8,O = { 0, H}, or z,O = IO, HI, the question arises of how to construct 
the deformed quantum bracket. We think that the answer can be found in a careful 
analysis of classical deformed systems and deformed Poisson brackets resulting from 
the functional evolution of systems depending on q-derivatives. 

This section is divided into two parts; for systems with discrete and continuous time. 

3.1. Deformed mechanical systems with discrete time 

Let us start with the following functional of action 

A =  L[X(T) ,  a + ( ~ ) l  d/-%(T) 

where we have used the measure defined by (lo), (11). We shall be dealing with the 
functions, which are in fact equivalence classes from $?[lo, r J =  and can be identified 
with pairs of sequences ({f(q2"to)}T=o,  {f(q2"t,)}:=:=o}. For such functions the following 
lemma can be easily checked: 

Lemma. If the integral 

j , : f ( T ) V ( T )  d/+(T) 0 

for any function q E $?[to, t J / =  vanishing for to and 1,  then the function f =  0 for 
t,q2', j= 1,2  and k >  1. 

This is an analogue of the standard lemma used in the derivation of Euler-Lagrange 
equations for the stationary point of a functional. Adding the variation aq( t )  to 
variables x we get the following variation of action depending on arbitrary function 
q and constant a: 

Let us analyse the derivative of variation with respect to parameter a: 

This equation is a necessary, and sufficient, condition for the stationary point of the 
functional A. According to the lemma it implies that variable x must fulfil the following 
deformed Euler-Lagrange equations: 

for f i q Z h  j = 1 , 2  k a l .  
SL+a:-=O SL 
sx sap 

It is clear that for systems with many variables depending on time we have the extended 
set of equations: 

E+a+-= SL 0 i =  1,. . . , n l,q2* j = l , 2  k a  1. (33) 
SX, 
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As an example of such equations we can derive them for the Lagrangian of deformed 
classical oscillator 

L = aqxa&2+ m2x2 f 2  
[a&+ m 2 ] x = 0 .  (34) 

The solution is the equivalence class of linear combination of the known Jackson 
exponential functions [12] where constants are calculated from the boundary conditions 

Note, also, that for such systems the Lagrangian linear in derivatives can be 

(35) 

(36) 

X ( f o )  = x ( t , )  = 0. 

considered without using spinor variables 
L = xa,x + my2 f 2. 

The Euler-Lagrange equation looks as follows 

[a, +a:+ m ] ~  = o 
and after transformation we get the recurrence formula for its solution in the $"to 

and similar expression for 9'9,. 

momentum as 

n 3 1  x(qzq2"ro) =x(q2"ro) [2-  m ( q 2 -  l )q2"r0] -x (q  - 2  q 2" to) 

The next step is construction of the Hamiltonian. We define the q-deformed 

p = SLf Sa&. (37) 

H = p a & - L .  (38 )  
From the Hamiltonian and Euler-Lagrange equations we are able to derive evolution 
equations for phase-space variables 

Then we pass to the Hamiltonian of the system 

a g  = SH/Sp a s p  = -q2[,aSH/8x. (39) 
These equations should determine the evolution of any function of phase-space vari- 
ables. The q-derivative of such a function can be divided into two parts 

a q u [ x ( T ) ,  P ( T ) l  

In this way we have obtained a formula analogous to the full derivative known in real 
analysis. Using formulae for derivatives (39) we get the classical evolution bracket we 
aimed for 

d ,u [x (T) ,P(T) l={u ,  
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For a pair of arbitrary functions C and D we have 

In fact this is a one-parameter family of brackets but the evolution does not depend 
on parameter a, as, differentiating formula (41) with respect to it, we get the following 
identity 

The variable x and its momentum give the following evolution brackets 

iP, 4: = -q2 {&PI; = 1. (44) 

As we see these equalities are also independent from parameter a. It is easy to check 
that there exists a whole class of functions for which the evolution bracket does not 
depend on a. They should fulfil equations which can be derived similarly to (43). The 
function on the left side should fulfil 

c [ P ( q 2 T ) ,  x ( q 2 T ) l - C [ P ( q 2 T ) ,  x(T)l-C[P(T) ,  x(q2T)1+ c [ P ( T ) ,  X ( T ) I = o  (45) 

or alternatively for the right function we get 

(46) 
SD SD 
- ( P ( q 2 T ) - P ( 7 ) ) +  q2'&'X ( X ( q ' T ) - - X ( T ) )  =o. 
SP 

Let us quote a few important features of constructed evolution brackets: 
(i) When q + 1 the evolution bracket becomes the classical Poisson bracket. 
(ii) It is neither symmetric nor anti-symmetric. The commutation relations of 

variable x and its momentum are consistent with that of the creation and annihilation 
operators for SU,(2) algebra. 

(iii) The Hamiltonian (38) is, in most general cases, not constant in time. However 
setting it as a function of x or p only we get the conserved Hamiltonian. For general 
cases we must solve the functional equation 

J,u = {U, H } :  =O. (47) 
We have solved this equation for two particular cases: 

(1) If the Hamiltonian is a sum of parts depending on one phase-space variable 

H=Hi(x)+Hdp). 
The constant in time modification of the Hamiltonian is as follows 

(2) If the Hamiltonian is given as a product of functions depending on one variable 

H=H, (x ) .HJp)  
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3.2. Deformed systems with continuous time 

According to the formulae of conjugation for functional derivatives, as long as we 
restrict ourselves to function +-linear, we can build the action over the continuous, 
infinite interval of time 

In this model we assume x j  to be continuous functions on [0, m]. The expressions 
derived in section 1.2 for conjugation with respect to Lebesgue measure are the last 
needed step for construction of Euler-Lagrange equations of a stationary point. They 
have identical form to the previously given equation (33) for systems with discrete time 
but are now fulfilled for 7 E [O, m] 

-0 i =  1 , .  . . , n 
SL SL --+a:-- 
Sx, SJ& 

Here we summarize the results as the procedure is similar to that used in the preceding 
section. We have the following evolution equation, identical in form with the equation 
for systems with discrete time 

s<=O when k j > n  

s,=1 when k , s n  

f' =[f;(q"'-*+'t)]  
f % = [ ~ ( q z ( l - % , c - %  2' ) t)l 
f h r  = [ f ; ( q 2 ( ' - 2 , - r 6 * t J t ) ]  

i =  1, .  . . , 2 n  

i =  l , . .  . ,2n  

i =  1, .  . . , 2 n  
where 

z a ( k , = l .  
PCnn 
( k )  

Formulae for evolution brackets of phase-space variables coincide with (53) 

Also the remarks about constants of evolution and the solutions (48). (49) for particular 
cases of Hamiltonians apply to the model with continuous time. 

We end this section with an example of a system with constraints which can be 
considered both as continuous or discrete time models. 

3.3. Example 

Let us start with the following linear Lagrangian derivative of complex field 

L = xJ:Z + x a p +  v(x, 2) .  (58) 
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Deriving the momenta we get the constraints 

, y 1 = p - 2  x 2 = p - x  

which are second class and conserved in time. 

procedure of Dirac quantization of systems with second-class constraints [ 17, 181. 
So we should modify evolution brackets (52), (57) in a similar manner to the 

Modified evolution brackets look as follows 

{ C, D) ? = I C, D}: - [ C, ~a } ; C X . ,  XP} : - l ap  I X S ,  D) 

IP,Pl,"= I.%PP),"=IP, 3, - b, x), - IP,Pl ,D={x ,  P},"= {P, xl ,"={x ,  .d,"= o 
I P ,  PI, -[&PI, - { P ,  4," = E  4," = -q2 /2  

[ P , P } ?  =Ix,pI4 -{I& X I ,  - {& 3?= 112. 

( 5 9 )  

and for variables and their momenta we have 
D- - - D- 

D -  - - D -  

D- - - D- 

It is interesting to note that in our example physical variables (on the submanifold 
given by constraints) can be chosen to ful6l symmetric or anti-symmetric modified 
evolution brackets 

[p + ax,  p+ p?}D = - q 2 / 2 +  ap/2 

{j + p2, p + aXJD = 1/2+ aP(-q2/2) 

accordingly for ap = 1 or ap = -1. 

4. Final remarks 

In this paper we have studied the properties of general functional derivatives and 
presented conjugation formulae for discrete and continuous time functionals. We 
applied the evaluated methods to classical mechanical systems depending on q-deriva- 
tives. Assuming that q-evolution of functions on phase-space is determined by an 
evolution bracket with a Hamiltonian, we derived the explicit form of many-parameters 
family of evolution brackets. We showed that the evolution as well as canonical 
evolution brackets of phase-space variables do  not depend on parameters. Investigated 
models have non-symmetric evolution brackets resembling deformed commutators of 
independent oscillator realizations of SU,(n). The characteristic feature of such systems 
are non-Conserved Hamiltonians. However we were able to construct, for certain classes 
of Hamiltonians, constants of evolution. It is also clear from our construction how we 
would evolve systems dependent on general &derivatives of  variables. For linear 
functions we get formulae identical to that presented in section 2 while the arbitrary 
function 4 implies time-dependence of evolution brackets on phase-space. 

Many interesting problems for such models remain unsolved. One of them is the 
extension, to complex functions, of complex time. When q is complex the calculations 
can probably be easily generalized both in discrete and continuous time realizations, 
if it is not a root of unity. For q-root-of-unity the inverse operator cannot be uniquely 
determined. This fact would in our opinion provide a serious difficulty in the construc- 
tion of the discrete time model. 
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Another open question is quantization of such models. So far we do not know any 
reliable prescription of how to pass from classical to quantum evolution bracket. 

Finally the problem arises whether models depending on different functional 
derivatives (for example different qj-derivatives) can be treated similarly to the 
presented systems depending only on the one functional derivative. 
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